
NASA Technical Memorandum 108459

A Programmable Heater Control Circuit
for Spacecraft
(Center Director's Discretionary Fund Final Report

Project No. 90-19)

D.D. Nguyen, J.W. Owen, D.A. Smith, W.J. Lewter

Structures and Dynamics Laboratory

and Astrionics Laboratory

Science Engineering Directorate

National Aeronautics and Space Administration
George C. Marshall Space Flight Center • MSFC, Alabama 35812

June 1994

TABLE OF CONTENTS

Page

INTRODUCTION ... l

APPROACH .. 3

SPACECRAVI" APPLICATIONS ... 4

BREADBOARD DEVELOPMENT .. 5

SOFTWARE DEVELOPMENT AND VERIFICATION ... 7

PROTOTYPE DEVELOPMENT AND TESTING ... 8

QUALIFICATION REQUIREMENTS ... 9

CONCLUSION .. 10

REFERENCES ... 11

iii

LIST OF ILLUSTRATIONS

Figure

1.

2.

3.

4.

5.

6.

7.

8.

Title Page

Typical thermostat .. 1

Mechanical thermostat circuit .. 2

Analog control circuit .. 2

Programmable heater control circuit with internal dc/dc converter 4

Programmable heater control circuit with battery power logic circuit 5

Programmable heater controller hybrid schematic .. 6

The dimension of prototype hybrid .. 8

Prototype hybrid system test configuration ... 9

PAGE IILQ414KNOT FILIV!.ED
V

TERMS AND ABBREVIATIONS

Bootloader

Breadboard

CPU

D/A

EEPROM

EMI

mil-specification

MODB

MOSFET

PHCC

RAM

a program used for loading user programs into EEPROM

a printed circuit board that can be mounted and wired whatever circuitry is

designed

central processor unit

digital-to-analog

electrically erasable programmable read-only memory

electromagnetic interference

Military Standard Mil-M-38510J, Mil-STD-883C...

operation mode pin B on 68 HC11 microcontroller

metal oxide semiconductor field-effect transistor

programmable heater control circuit

random access memory

vii

PA_ __A_ _ FILME_

TECHNICAL MEMORANDUM

A PROGRAMMABLE HEATER CONTROL CIRCUIT FOR SPACECRAFT

Center Director's Discretionary Fund Final Report

Project No. 90-19

INTRODUCTION

Spacecraft thermal control is accomplished for many components through use of multilayer insu-

lation systems, electrical heaters, and radiator systems. The heaters are commanded to maintain compo-

nent temperatures within design specifications. Control of the heater system has been accomplished in

several ways including local thermostats, analog devices, and use of centralized digital control systems.

Many component heater control systems use thermostats to provide the desired temperature con-
trol. Thermostats are mechanical devices which make or break electrical contact due to change in tem-

perature. This is usually accomplished via differential thermal expansion of a bimetallic disk that
changes shape, and therefore position, with temperature. A typical thermostat is shown schematically in

figure 1. Since a thermostat can conceivably fail in the closed position, two thermostats are used in

spacecraft operation and are wired in series so that the circuit breaks if either of the thermostats open.
Further, to provide the complete redundancy needed for spaceflight, two parallel circuits, each with two

thermostats, are required as a safeguard against one of the thermostats failing in the open position.

Figure 2 shows typical circuitry using thermostats.

Weld Cap

100314-1_

Header Body
201434-1

Wave Washer_
201702-1

Arm

100302-()
Pin

201689-()

Terminal

// 100301-1

_-__'_ F Glass Seal

I kJ I I LJl / /-StationaryContaot

I I I I//
L'_'_'_' / _ Movable Contact

tl
1 1[////////11 JV#¢._ I _ Insulator

"1 -LJ / 201701-1
I ._¢ _ I_,,--,,_ _ Disk Retainer

201699-1
_cap

/ _ %-- Pin Guide 201857-()

_4 _-- Disk 201700-1

201902-()

Figure 1. Typical thermostat (courtesy of Elmwood Sensors, Inc.).

+

28 VDC

power bus

thermostat

0

Thermostatically Control Heater

I componentstrip heater

28 VDC VDC

power busA _ p°weBbUS

Multiple Circuits For Redundancy

Figure 2. Mechanical thermostat circuit.

Alternatives to mechanical thermostats have included analog circuits in varying design applica-

tions, using solid state devices. Analog devices have the advantage of precise temperature control, for

components with operational temperature requirements which must be maintained within small limits,

such as spacecraft pointing and control systems. A schematic of an analog controller is shown in figure
3. The analog circuitry must also be designed with redundancy in spacecraft applications.

I M28 VDC dc/dc

power bus regulator

m

he, ,rI--I
controller H conditioner

heater
temperature

sensor

Figure 3. Analog control circuit.

Some spacecraft have used central digital control systems to accomplish temperature control of

components. This involves design of a central digital computer which receives many analog inputs from

distributed component controllers. The analog signals are converted to digital data and the control func-

tions are determined by the central processor unit (CPU). The heaters are commanded individually from
the CPU based upon control logic. For some applications, proportional control is provided through volt-

age regulation.

Several disadvantages with these systems can be identified. For thermostatically controlled sys-

tems the mechanical thermostat itself has a potential for failure, either opened or closed. The thermostat,

being mechanical, provides no temperature data; therefore, separate temperature sensors must be pro-

vided by a central spacecraft data system. The thermostats have a predetermined set point (temperature)
and dead band (control range) that cannot be altered.

2

Analogdeviceseliminatethe mechanical problems associated with thermostats, but they also

have a predetermined set point and dead band that cannot be altered once physically integrated into the

spacecraft. The analog device has no feedback of temperature data for monitoring the thermal condition

of the component, even though one or more temperature sensors are integrated into the circuit. If the

component temperature must be monitored, another sensor must be installed and integrated with the

spacecraft central data system.

The central digital control systems provide the most versatility and flexibility with respect to
control authority, data acquisition, reprogramming, and sometimes proportional control. These systems

are usually expensive, require substantial integration during spacecraft assembly, and result in signifi-

cant spacecraft wiring for the control instrumentation.

With the advanced technology in both electronic sensing and computer programming, this devel-

opment introduces solid state design, use of control instrumentation as data available to the central data
system, reprogramming capability of the local microprocessor during the spacecraft mission, if required,

and the elimination of significant spacecraft wiring. The hybrid integrated circuit has a temperature sens-

ing and conditioning circuit, a microprocessor, and a heater power and control circuit. This program-
mable heater control circuit (PHCC) is miniature and housed in a volume which allows physical integra-

tion with the component to be controlled. Applications might include alternate battery-powered logic-

circuit configurations. A prototype unit with appropriate physical and functional interfaces was procured

for testing. The physical functionality and feasibility of the hybrid integrated circuit were successfully
verified.

APPROACH

The effort was to develop a small, integrated hybrid circuit that captured the advantages of both

central digital controllers and local autonomous control systems. A simplified schematic of the device is

shown in figure 4. Optional configurations are shown in figure 5. The advantages of this design include
solid state design, use of control instrumentation as data available to the central data system (through a

time-multiplexed data bus), reprogramming capability of the local microprocessor during the spacecraft
mission, if required, and the elimination of significant spacecraft wiring (the device only requires a

power bus interface and a data bus interface).

The hybrid integrated circuit has a temperature sensing and conditioning circuit, a microproces-
sor, and a heater power and control circuit. The device is miniature and housed in a volume which

allows physical integration with the component to be controlled. In typical operation, the set point tem-

perature and dead band control range are programmed in the heater control logic ofthe microprocessor.

Temperature sensors reference the component temperature through signal conditioners and an analog-to-

digital converter. Based on the reference temperature, the microprocessor issues commands to the heater
controllers to turn on or off (voltage regulation, or proportional control is not provided in this design,

with the exception of varying the heater duty cycle over time). The integrated circuit, through the micro-

processor, also interfaces with the central data bus. Upon interrogation by the spacecraft CPU via this
bidirectional communication link, component temperature data is passed upon demand to the spacecraft

central processor. Additionally, the status of the heaters (on or off), the duty cycle of the heaters, and

computed functions such as power utilization can be communicated and eventually telemetered to

ground stations. The central spacecraft computer system also has the capability of reprogramming or

reconfiguring the local microprocessor heater control logic to adjust to unexpected or anomalous events.

3

m

i

i;
I

SERIAL
_ _ MICROCONTROLLER COMMUNICATIONS

| POWER

"_ 12 BIT D/A .____NSTRUMENT. --'--ISWITCH]

.| CONVERTER - I AMPLIFIER _--

[I
I_ 8/1 ANALOG _,
I MULTIPLEXER [

5V DC-DC 15V 1
1 S V CONVERTER I TEMPERATURE

28 VOLT SPACECRAFT POWER BUS

i SPACECRAFT
y CENTRAL

PROCESSOR

--I HEATER

TEMPERATURE

SENSOR

(6 POSSIBLE)
i

Figure 4. Programmable heater control circuit with internal dc/dc converter.

Additionally, the local microprocessor can be programmed to react to events such as temperature sensor
failures, heater circuit failures, etc., and take action to use redundant systems. The versatility and utility

of the device is quite good and offers substantial design and operational advantages to spacecraft thermal

designers.

SPACECRAFT APPLICATIONS

Potential applications of the PHCC are believed to exist both in the spacecraft and payload areas.

The primary application is believed to be free-flying spacecraft with somewhat tight component
temperature-control requirements. These include applications such as nickel-hydrogen battery tempera-

ture control, pointing and control system temperature control, low temperature conditioning of science

instruments, telescope mirror assembly temperature control, and heater control for variable conductance

heat pipe systems. The payload applications might include alternate design configurations, such as

battery-powered logic circuits, for short duration missions, eliminating the need for internal dc/dc
conversion within the PHCC (see fig. 5). Control requirements would be similar to the spacecraft

applications discussed above. Payload applications may not require an interface with a central data

system but might require expanded memory in the microprocessor, with data retrieval occurring after

flight. These design options can be made available through several off-the-shelf controllers, with varying

design features selected by the spacecraft or payload designer. Depending upon the spacecraft market
and unit cost for these devices, these solid state programmable systems could replace mechanical

thermostats, analog devices, and central controllers on future spacecraft programs.

4

ISPACECRAFT J
' CENTRAL J

PROCESSOR I

FI HEATER I

TEMPERATUREI
SENSOR I

(6 POSSIBLE)_,

28 VOLT SPACECRAFT POWERBUS

Figure 5. Programmable heater control circuit with battery powered logic circuit.

BREADBOARD DEVELOPMENT

A fully functional breadboard of the PHCC was developed. The attached schematic, figure 6,
shows the circuitry developed to accomplish this task. The Motorola M68HC811 E2 microcontroller was

chosen to be the heart of the design. This controller is in Motorola's HC11 family of microcontrollers. It

features 2 kilobytes of electrically erasable programmable read-only memory (EEPROM), an 8-bit

analog-to-digital converter with eight multiplexed inputs, an RS232 port, internal timers, an 8-bit bidi-

rectional port, and an 8-bit output port. The Maxim MAX700 was chosen to provide the reset signal

upon power-up. The microcontroller can read eight analog sensor input signals. These are input through

an 8-to-1 analog multiplexer. The multiplexer used is the Analog Device 7503. The input are selected by
three control lines from the microcontroller. Two of these inputs are AD590 temperature transducers that

are mounted internal to the case. The other six inputs are set up to be AD590 inputs but can also be used

to input other signals. Each external input has a pair of external pins with a 15-V reference signal on one

pin and the other going to an input of an 8-to-1 multiplexer and to a 10-k ohm resistor to ground. The

output of the multiplexer then goes to the plus input of the instrumentation amplifier. The minus input of

the instrumentatl'0n amplifier is connected to the output of a 12-bit digital-to-analog (D/A) converter.

The D/A used is the MicroNetworks MN371. The 12 input bits to the D/A come from the microcon-

troller digital output ports. The instrumentation amplifier used is the Burr Brown PGA200 program-

mable gain instrumentation amplifier. It has four selectable gain of 1, 10, 100, 1,000. The purpose of the

D/A converter and the selectable gain is to provide a dc offset and amplification of the signal for better
resolution and control around a setpoint.

5

ii I
t

I
÷!

I

J

-o

II

- "._lUl_

l

i!

I

, t L
1 t

i:l ,t
,'!', ,'!

II I

,'i ,,5

,,-II-i-

.1....7,1444

"i '11

_>ili. !

ii

d

0

N

c_

d_
,6

6

Communication with a main computer is accomplished through the microcontroller's RS232

port. The digital transmit and receive lines from the microcontroller are level-converted and buffered
within the hybrid. The transmit line is buffered by a 1488 line driver and the receive line is buffered by a
1489 line receiver.

Initial programming of the 2k of EEPROM is done through the RS232 port. A "program mode"

is entered when the MODB line that comes to an external pin is tied to ground. A "Bootloader" program

is loaded into the random access memory (RAM) and takes control of the microcontroller to load the

EEPROM. Software or "control code" is developed using the HC11 assembly language and assembler. It

should be noted that the EEPROM can be reprogrammed under computer control through the RS232

port connected to the computer used for monitoring and control. Changing set points or control algo-

rithms can be accomplished easily through the monitor and control computer also.

Four heaters can be controlled from this hybrid. There are two external lines provided for each

heater. The load voltage brought in on the "28 V" external pin is connected to one of these lines. The
other line is connected to the drain of an International Rectifier IRFF130. This metal oxide semiconduc-

tor field-effect transistor (MOSFET) is rated at 100 V and has an "on" resistance of less than 0.2 ohms.
The MOSFET's are controlled by outputs from the microcontroller that are optically isolated from the

MOSFET by an HP2200 optical insulator.

SOFTWARE DEVELOPMENT AND VERIFICATION

The PHCC software is shown in appendix A. The software was developed using the breadboard
unit discussed above. The software is designed to set, monitor, and program the heater controller and is

as simple and flexible as possible. Some of the function features in the software include the following:

• Header files

• Turning cursor on and off

• Setting screen colors

• Screen locations

• User inputs

• Module functions

• Global variables

• Communicating with heater controller

• Controlling cursor

• Initializing stack, output ports, heaters

• Initial conditions

• Heater control

• Reading temperature.

Verification was also accomplished on the prototype unit when software was loaded and each function

was successfully executed.

7

PROTOTYPE DEVELOPMENT AND TESTING

To verify the physical functionality and feasibility of fabrication of the hybrid integrated circuit,

a prototype unit was procured and built from non Mil-certified parts. The prototype unit did not include

the internal dc/dc converter required for the flight version. This function was simulated external to the

prototype. The unit was delivered and burn-in tests were accomplished, and the software was loaded and
verified. Of four units delivered and tested, one unit failed the burn-in test. The dimensions of the proto-

type are shown in figure 7. The width is 2 inch and length is 2.85 inch. The external pin connections are
on 0.15-inch spacing and extend 0.25 inch frorh the body on each side. The mounting flanges extend

0.35 inch from each end and give an overall length of 3.85 inch. The base of the package is 0.0625 inch
thick, and the diameter of the mounting holes is 0.16 inch with the centers 3.175 inch apart. The overall

height is 0.5675 inch.

PROTOTYPE HYBRID PRODUCED BY

ARGO TRANSDATA CORPORATION

Figure 7. The dimension of prototype hybrid.

The prototype Hybrid weighs approximately 160 g (5.6 oz). The quiescent power consumed with

all heaters "off" and including the dc/dc converter is 1.5 W. The complete system test configuration is

shown in figure 8. The test procedures and results are described and tabulated as shown in appendix B.

28 volt.

Power Supply

P rot or ype

llybrld
DC/DC

Converter "

RS232 Null Modem

Connection

IP_M Compat _b[e

P C

Figure 8. Prototype hybrid system test configuration.

QUALIFICATION REQUIREMENTS

Based upon the above discussion, the PHCC has been shown to be a feasible design concept. The
software is fully developed and verified. Further development is required in the area of procurement and

testing of a Mil-certified part with an internal dc/dc converter for generic qualification testing. The test-

ing should include thermal vacuum performance testing, thermal cycling, vibration, and electromagnetic

interference (EMI) testing. Appropriate test plans should be generated to qualify the device for a wide

range of spacecraft applications as an off-the-shelf item. Military Standard 1540B provides qualification

test requirements routinely accomplished at MSFC. Should a joint venture be initiated with a potential
PHCC vendor, MSFC qualification testing is an option that is available.

9

CONCLUSION

The PHCC design has progressed to the definition of a very efficient and compact device includ-

ing an internal dc/dc converter. The software is fully developed and verified. A breadboard unit has been

developed and tested with applicable software. Also a prototype unit with appropriate physical and

functional interfaces was procured for software testing and for burn-in testing. The remaining work to

develop a flight-qualified device includes fabrication and testing of a Mil-certified part, with an internal
dc/dc converter.

An option for completing the PHCC flight qualification testing is to enter into a joint venture

with industry. The government contribution would include the design, software, and development his-

tory; also, the government could provide the qualification testing and data analysis. The industry partici-

pation would include fabrication of the units for testing, per Mil-specification. Successful completion of

the test program would result in a commercially marketable device or family of devices, with applica-

tions to spacecraft thermal control systems.

10

REFERENCES

1. "Thermal protection system of the space shuttle." NASA-CR-4227, 1989.

2. Humphries, R., and Wegrich, R.: "A Survey of Spacecraft Thermal Design Solutions." ESA and

ASI, European Symposium on Space Environmemtal Control Systems, 4th, Florence, Italy, 1991.

3. Best, R.: "Thermal Control Subsystem of the Space Telescope Faint Object Camera." SS-DS-2060,

Dornier System, 1984.

4. Owen, J.R., Editor: "Thermal Analysis Workbook." NASA, Marshall Space Flight Center,

Huntsville, Alabama, 1991.

5. Hordeski, F.M.: "Control System Interfaces." Prentice Hall Inc., New Jersey, 1992.

6. Gates, S.C., Editor: "Laboratory Automation Using the IBM PC." Prentice Hall, New Jersey, 1989.

7. Zuech, N., Editor: "Handbook of Intelligent Sensors for Industrial Automation." Addison-Wesley

Publishing Co. Inc., Massachusetts, 1991.

8. Tzafestas, S.G., Editor: "Engineering System with Intelligence." Kluwer Academic Publisher, The

Netherlands, 1991.

9. Ollero, A., Editor: "Intelligent Components and Instruments for Control Application." Pergamon
Press, Great Britian, 1993.

10. Anderson, C.W., and Kosut R.L.: "Adaptive Robust Control, On-Line Learning." Proc. IEEE

Conference on Decision and Control, Brighton, England, 1991.

11. Ollero, A., Garcia-Cerezo A., and Aracil J.: "Design of Rule-Based Expert Controllers." ECC91

European Control Conference, Grenoble, France, 1991.

12. Paul, C.J., Acharya, A., Black, B., and Strosnider J.K.: "Reducing Problem-Solving Variance to

Improve Predictability." Communications of the ACM, 1991.

13. Shinners, S.M.: "Modern Control System Theory and Design." J. Wiley, New York, 1992.

11

APPENDIX A

PHCC SOFTWARE

PA_I[lANK NOT FILMED

13

PHCC Software

/*

*!

include statements for header files

#include <stdio.n>

_include <s_dlib.h>

#include <conio.h>

#include <mash.n>

#include <dos.h>

#include <_lme.n>

#include <sys\types.h>

#include <sys\timeb.h>

#include <bios.h>

#include "rs232.h"

/*

*I

definitions used in turning cursor on and off
........................ o. • o o ° ° o oo °° °o o° °o ° o. °o °° °° ° °° oo

aeee

#define VIDEO IO 0xl0

#define SET CRSR I

/*

,/

o definitions used for setting screen colors
... ° °. • °

aeee,

#define BLACK 0x00

#define HLUE 0xl0

#define GREEN Ox20

@deflne CY_4 0x30

#define RED 0x40

#define MAGENTA 0x50

#define ERO_ 3x60

{define WHITE 0x70

#define BLACK ON 0x00
P_ PAG_ IIIL_NK NOT FII..ME_

15

#define ELUE ON 0x01

#define GREEN O_ 0x02

#define tYAN ON 0x03

,#define RED ON 0x04

#define MAGENTA O_ 0x05

#define BROWN ON 0x06

#define _ITE ON 0x07

#define GREY ON Ox08

#define BRIGHT BLUE ON 0x09

#define BRIGHT GREEN ON 0x0A

#define BRIGHT CYAN ON 0x0B

#define BRIGHT RED ON 0x0C

#define BRIGHT MAGENTA ON 0x0D

#define YELLOW ON OxOE

#define BRIGHT WHITE ON Ox0F

/*

,/

o definitions used for screen ioca_ions

16

#define PLATE UL ROW !

#define PLATE UL COLUMN 12

#define PLATE--ROWS 15

#define PLATE COLUMNS 55

#define HEATER1 UL ROW 2

#define HEATER1 UL COLUMN 14

#define HEATERI-ROWS 5

#define HEATER1 COLUMNS 19

#define HEATER2 UL ROW 7

#define HEATER2-UL-COLUMN _4

#define HEATER2-ROWS

#define HEATER2-COLUMNS ii

#define SENSOR1 UL ROW 4

#define SENSOR1 UL COLUMN !8

#define SENSOR1 ROWS 1

#define SENSOR1 COLUMNS 6

#define SENSOR2 UL ROW 4

#define SENSOR2 UL COLUMN 56

#define SENSOR2-ROWS i

#define SENSOR2 COLUMNS 6

#define SENSOR3 UL ROW 8

#define SENSOR3 UL COLUMN 56

#define SENSOR3 ROWS 1

#define SENSOR3 COLUMNS 6

#define SENSOR4 UL ROW 12

#define SENSOR4 UL COLUMN 18

#define SENSOR4-ROWS !

#define SENSOR4 COLUMNS

#define SENSOR5 UL ROW 12

#define SENSOR5 UL COLUMN 56

#define SENSOR5 ROWS 1

#define SENSOR5 COLUMNS 6

#define ROW_query_window 18

#define COLUMN_query_window 40

#define ROW HEATER1 SETPOINT 3

#define COLUMN HEATER1 SETPOINT !

#define ROW HEATER2 SETPOINT 9

#define COLUI_N HEATER2 SETPOINT 70
q

#define ROW NUMBER TO AVERAGE 23

#define COLUMN NUMBER TO AVERAGE 30

#define ROW ERROR MESSAGE 16

#define COLUMN ERROR MESSAGE 20

/*

,/

o definitions used for getting information from user

#define RETURN 13

#define ESCAPE 27

#define BACKSPACE 8

#define LEFT ARROW 75

#define RIGHT ARROW 77

#define CURSOR 176

#define F1 59

#define F2 60

#define F3 61

#define F4 62

#define F5 63

#define F6 64

#define F7 65

#define F8 66

#define F9 67

/*

,/

i_aa_a_a_a_a_aaa_aaaaa_a_aaaaaaa_aaa_aa_aaaaaaaa_aaaaa_

o function declarations for functions in this module
o ,. ,° ,, .0 ,...... ° ° °. • • ° ,° °. °° .°

aeee_

void send_byte to heater(unsigned char c) ;

unsigned char receive_byte from heater(unsigned comm_port) ;

void wait_for_comm_port_data(void) ;

void turn_on_cursor(void); 17

void turn off cursor(void) ;

void change_cursor(int top, int bottom);

void background on screen(void) ;

void update_screen(void);

void display_screen(void);

void write_string_in_screen buffer(char *string, int row, int column);
void write double in screen-buffer(char *format_string,

double number, int _ow, int column) ;

void cut.string(char *destination, char *source, int first_char, int last_ch_

void user edit field on screen(char *string,

int roW, int-start column,- int end column,

char field_foreground, char field_background,

char cursor_foreground, char cursor_background);

void copy_characters_from screen(char *string,

int start row, int end row, int start_column, int end column);

void copy_characters_to screen_ char *string,
int start row, [nt end row, int start column, int end column) ;

void copy_attribuEes_from screen(char *string,

int s_art row, inE end_row, int start_column, int end_column) ;

void copy_attributes_to_screen(char *string,

int start_row, int end_row, int start_column, int end_column);

void fill character block(char c,

int start row, int end row, int start_column, int end_column) ;

void fill attribute_block(char c,

int start_row, int end_row, int start_column, int end_column) ;

char query_user_for_key(char *prompt) ;

double query_user_for_number(char *prompt) ;

void open_window(char *character_array, char *attribute array,
int start row, int end row, int s_arn_column, int end_column,

char color_byte);
void close window(char *character_array, char *attribute_array,

int start_row, int end_row, int start_column, int end_column) ;

/*

./

char screen characters[2001], screen_attributes[2001];

unsigned comm_port;

int debug_mode = O;

the main program

*/

int main(int argc, char *argv[])

{
static char string[256];

char key = ' '-!

unsigned char heater status;

unsigned char sensor[data;

unsigned char sensor2-data;

unsigned char sensor3-data;

unsigned char sensor4-data;

unsigned char sensorS--data;

double sensorl_temperature = 0.0;

double sensor2_temperature = 0.0;

double sensor3_temperature = 0.0;

double sensor4_temperature = 0.0;

double sensor5_temperature = 0.0;

double averages = 0.0;

double number_of_readings_to_average = i0.0;

unsigned char heater select;

unsigned char sensor-select;

unsigned char set_point;

FILE *fileptr;

/*

Check for debug mode.

*/

if (argc > 1)

if { (argv[l]) [0] == 'd'

debug_mode = !;

I I (argv[l])[0] == 'D')

/*

Set up the screen.

*/

turn off cursor();

background_on_screen();

/*

Set up the comm port.

*/

do

{

key = query_user_for_key("Enter 1 for COMI or 2 for COM2");
}

while(key != 'I' && key != '2' && key != ESCAPE);

if (key == ESCAPE) 19

{
turn on cursor() ;
return Y ;

}

if (key == '2') comm_port = COM2;

else comm_port = COMI;

initialize_comm_port(comm_port,

_toMcat8 I _COM_STOPI i _COM__OP_ITY i _C0M9600);

if (check_status(comm_port) & DATA_READY_BIT)

receive_byte(comm_port);

/*

Main program loop.

*/

do

do

{
send_byte_to_heater ('D') ;

heater status = receive_byte_from heater(comm_port) ;

sensor[data = receive_byte from heater(comm_port);

sensor2--data = receive_byte_from-heater(comm_port);

sensor3 data = receive_byte from heater(comm_port) ;

sensor4_data = receive_byte_from_heater(comm_port) ;

sensor5_data = receive_byte_from_heater(comm_port) ;

sensorl_temperature += (double) sensorl_data * 50.0 / 255.0;

sensor2_temperature += (double) sensor2_data * 50.0 / 255.0;

sensor3 temperature += (double) sensor3_data * 50.0 / 255.0;

sensor4_temperature _= (double) sensor4_data * 50.0 / 255.0;

sensor5_temperature += (double) sensor5_data * 50.0 / 255.0;

++averages;

if (averages >= number of readings_to_average)

{

write double in screen buffer("%6.11f",

(sensorl_temperature / averages),

SENSOR1 UL ROW, SENSOR1 UL COLUMN) ;

write double in screen buffer("%6.11f",

(sensor2 temperature / averages),

SENSOR2 UL ROW, SENSOR2 UL COLUMN) ;

write double in screen buffer("%6.11f",

- (sensor3_temperature / averages),

SENSOR3 UL ROW, SENSOR3 UL COLUMN);

write double in screen buffer("%6 llf"• t

(sensor4_temperature / averages),
SENSOR4 UL ROW, SENSOR4 UL COLUMN) ;

write double in screen buffer("%6.11f",

(sensor5 temperature / averages),

SENSOR5_UL ROW, SENSOR5 UL COLUMN) ;

sensorl_temperature = 0.0;

sensor2 temperature = 0.0;

sensor3_tempera_ure = 0.0;

sensor4_temperature = 0.0;

sensor5 temperature = 0.0;
averages = 0.0;
}

if (heater

else

{

fill attribute_block(WHITE ON I RED,

HEATER1 UL ROW, HEATERI--UL ROW + HEATER1 ROWS - i,

HEATERI_UL_COLUMN, HEATERI_UL_COLUMN + HEATERICOLUMNS _ 1

fill attribute block(BRIGHT WHITE ON I RED,

SENSOR1 UL--ROW + i, SENSOR1 UL--ROW + 1 + SENSORI_ROWS _ i,
} SENSORI_UL_COLUMN, SENSORI_UL_COLUMN + SENSORI_COLUMNS _ !

if (heater status & 2)
{

fill attribute block(WHITE ON I BROWN,

HEATER2 UL-ROW, HEATER2-UL ROW + HEATER2 ROWS - i,

HEATER2_UL_COLUMN, HEATER2_ULCOLUMN + HEATER2_COLUMNS _ !

fill_attribute block(BRIGHT _HITE ON I BROWN,

SENSOR5 UL--ROW + i, SENSOR5 UL-ROW + 1 + SENSOR5 ROWS
} SENSOR5_UL--COLUMN - i,

- , SENSOR5 UL_COLUMN + SENSOR5 COLUMNS - 1
else

{

fill_attribute block(WHITE ON I RED,

HEATER2 UL ROW, HEATER2--UL ROW + HEATER2 ROWS
HEATER2_UL--COLUMN, _ - 1

-- HEATER2_UL_COLUMN+ HEATER2_COLUMNS _ 1

fill attribute block(BRIGHT WHITE ON I RED,

SENSOR5 UL ROW + i, SENSOR5 UL-ROW + 1 + SENSOR5 ROWS - i,
} SENSOR5_UL_COLUMN, SENSOR5UL__OLUMN + SENSOR5_COLUMNS _ i

fill attribute block(BLACK ON I WHITE,

SENSOR1 UL-ROW, SENSORI-UL ROW + SENSOR1 ROWS
SENSORI_UL--COLUMN, - 1

-- SENSORI_UL_COLUMN + SENSORI_COLUMNS - 1);

fill_attribute block(BLACK ON I WHITE,

SENSOR5 UL ROW, SENSORS--UL ROW + SENSOR5 ROWS
SENSOR5_UL--COLUMN, - 1

-- SENSSR5_UL_COLUMN + SE--NSOR5_COLUMNS - i);

status & !
{

fill_attribute block(WHITE ON I BROWN,

HEATER1 UL--ROW, HEATERI-UL ROW + HEATER1 ROWS TERC L COL -
, HEATERI_UL_COLUMN + HEATERI_COLUMNS _ 1

fill attribute block(BRIGHT WHITE ON I BROWN,

SENSOR1 UL-ROW + i, SENSOR1 UL-ROW + 1 + SENSOR1 ROWS - i,

} SENSORI_UL_COLUMN, SENSORI_UL_COLUMN + SENSORI_COLUMNS _ 1

21

"% 01f % 01f "sprintf(string, . .

number of readings_to_average, averages + 1.0);

write_string in screen buffer(string,
ROW NUMBER TO AVERAGE, COLUMN NUMBER TO AVERAGE) ;

update_screen();
}

while(!kbhit()) ;

/*

Get the key that was pressed.

*/

do

{
key = (char) getch() ;

if (key == 0) getch();

}
while(kbhit()) ;

/*

Set point command.

*/

22

if (key == 's' II key == 'S')

{

do

{
heater_select = (unsigned char) query_user_for_number(

"Enter 1 or 2 to select the heater") ;

}
while(heater_select < 1 I I heater_select > 2);

do

(
sensor select = (unsigned char) query user for number(

- "Enter i, 2, 3, 4, or 5 to select the sensor") ;

}
while(sensor_select < 1 I I sensor_select > 5) ;

do

(
set_point = (unsigned char) (query_user_for number(

"Enter 0 ½C to 50 ½C for set point" _ * 255.0 / 50.0)

}
while(set_point < 0 I I set_point > 255) ;

send_byte to heater('S') ;

send_byte to heater(heater_select) ;

send_byte to heater(sensor select) ;

send_byte to heater(set_point);

if (heater select == 1)

(
write_string_in_screen_buffer ("maintain",

turn on cursor() ;
return 0;
}

/*

*/

void send_byte_to_heater(unsigned char c)

{
unsigned char echo;

if (debug_mode) return;

send_byte(c, comm_port) ;

wait_for_comm_port_data();

echo = receive_byte(comm_por_) ;

if (echo != c)

{
write_string_in_screen_buffer("Incorrect byte echoed back",

ROW ERROR MESSAGE, COLUMN ERROR MESSAGE) ;

update_screen();

turn on cursor();

exit_ i--);

}

unsigned char receive_byte_from_heater(unsigned comm_port)
I

if (debug_mode)
return (unsigned char) ((double) rand() * 255.0 / 32767.0);

wait for_comm_port_data() ;

return receive_byte(comm_port);

}

void wait_for_comm_port_data(void)

int key, key_was_hit = 0;

while (0 == (check_status(comm_port) & DATA_READY_BIT))

{
if (kbhit())

{
key_was hit = i;
key = getch(); 23

ROW HEATER1 SETPOINT, COLUMN_HEATERI_SETPOINT) ;

sprintf(string, "sensor %-2d", (int) sensor select);

write string in screen buffer(string,
-- ROW HEATER1 SETPOINT + i, COLUMN_HEATER1 SETPOINT) ;

"at % llf½C "sprintf(string, • ,
(double) (set_point * 50.0 / 255.0));

write string in screen buffer(string,

- ROW HEATER1 SETPOINT + 2, COLUMN_HEATER1 SETPOINT);

}

if (heater_select == 2)

{
write string in screen buffer("maintain",

-- ROW HEATER2 SETPOINT, COLUMN_HEATER2_SETPOINT);

sprintf(string, "sensor %-2d", (int) sensor_select);

write string in screen buffer(string,
- ROW HEATER2 SETPOINT + I, COLUMN_HEATER2_SETPOINT);

"at % llf½C "sprintf(string, • ,
(double) (set_point * 50.0 / 255.0)) ;

write string in screen buffer(string,

-- ROW HEATER2_SETPOINT + 2, COLUMN_HEATER2_SETPOINT);

}

/*

Change number of averages.

*/

else if (key == 'a' I I key == 'A')

{
do

{
number of readings to average = query_user for_number(

"Enter number of readings to average for screen display")

}
while(number_of readings to_average < 1.0) ;

}

/*

Setup to save values to a file.

*/

else if (key == 'f' ! I key == 'F')

{

}

}
while(key != ESCAPE);

/*

Exit the program after restoring the cursor.

24 *I

if (key == 0) gench() ;

if (key == ESCAPE)

{
turn on cursor() ;

exit_ i--);

}
}

if (key_was_hit && key != 0) ungetch(key };

}

/*

,/

void turn on cursor(void)

{
change_cursor(6, 7) ;

}

void turn off cursor(void)

{
change_cursor(63, 63) ;

}

void change_cursor(int top, int bottom)

union REGS regs;

regs.h.ah = (unsigned char) SET_CRSR;

regs.h.ch = (unsigned char) top;

regs.h.cl = (unsigned char) bottom;

int86(VIDEO_IO, ®s, ®s) ;

/*

,/

void background_on_screen(void)

{
char *cp = screen_characners;

"%s" "sprintf(cp,

sprintf(cp, "%s", "

25

sprintf (cp, "%s", "

$printf(cp, "%s", "

$prinUf(cp, "%s", "

sprintf(cp, "%s", "

sprintf(cp, "%s", "

sprintf(cp, "%s", "

sprintf(cp, "%s", "

sprintf(cp, "%s" "

sprintf(cp, "%s" "

sprintf(cp, "%s" "

sprintf(cp, "%s" "

sprintf(cp, "%s" "

sprintf(cp, "%s" "

sprintf(cp, "%s" "

sprintf(cp, "%s" "

sprintf(cp, "%s", "

sprintf (cp, "%s", "

sprintf(cp, "%s", "

sprintf(cp, "%s", "

Heater i¢
O @

½C °
o 1 o

½c

4

sprintf(cp, "%s", "Esc ... exit to dos

sprintf(cp, "%s", "S set point command

sprintf (cp, "%s", "A set sensor averages

sprintf(cp, "%s", "F save readings in a file

½C

3

Copper

fill_attribute_block(WHITE_ON I BLACK, 0, 24, 0, 79) ;

fill attribute block(WHITE ON I BROWN,

PLATE UL ROW, PLATE UL ROW + PLATE ROWS - i,

PLATE UL COLUMN, PLATE UL COLUMN + PLATE_COLUMNS - 1);

fill attribute block(WHITE ON I BROWN,

HEATER1 UL-ROW, HEATERI--UL ROW + HEATER1 ROWS - l,

HEATERI--UL--COLUMN, HEATERI--UL COLUMN + HE--ATERI COLUMNS - 1);

fill attribute block(WHITE ON I BROWN,

HEATER2 UL-ROW, HEATER2-UL ROW + HEATER2 ROWS - l,

HEATER2--UL--COLUMN, HEATER2--UL COLUMN + HEATER2_COLUMNS - 1);
N

fill attribute block(BLACK ON WHITE,

SENSOR1 UL-ROW, SENSORI--UL ROW + SENSOR1 ROWS - i,

SENSOR1 UL COLUMN, SENSSRI_UL_COLUMN + SENSORI_COLUMNS - 1);

fill attribute block(BLACK ON WHITE,

SENSOR2 UL--ROW, SENSOR2--UL ROW + SENSOR2 ROWS - l,

SENSOR2--UL--COLUMN, SENSOR2--UL COLUMN + SENSOR2_COLUMNS - 1);

fill attribute block(BLACK ON WHITE,

SENSOR3 UL--ROW, SENSOR3--UL ROW + SENSOR3_ROWS - l,

SENSOR3--UL--COLUMN, SENSOR3_UL_COLUMN + SENSOR3_COLUMNS - 1);

26

fill attribute_block(BLACK ON WHITE,
SENSOR4 UL ROW, SENSOR4--UL ROW + SENSOR4 ROWS - i,

SENSOR4 UL COLUMN, SENSOR4_UL_COLUMN + SENSOR4_COLUMNS - i);

fill antribute block(BLACK ON _ WHITE.
SENSOR5UL--ROW, SENSOR5--ULROW+ SENSOR5ROWS- i,
SENSOR5:UL_COLUMN,SENSOR5UL_COLUMN+ISENSOR5_COLUMNS- 1);

fill attribute block(BRIGHT _HITE ON I BROWN,
SENSOR1UL-ROW + i, SENSOR1UL-ROW+ 1 + SENSOR1ROWS- i,
SENSORI-UL--COLUMN, SENSOR1UL COLUMN+ SENSOR1COLUMNS- 1) ;

fill a_tribute_block(BRIGHT _CHITEON I BROWN,
SENSOR2UL ROW+ i, SENSOR2UL--ROW+ 1 + SENSOR2ROWS- i,
SENSOR2UL COLUMN, SENSOR2UL COLUMN+ SENSOR2_COLUMNS- 1);

fill attribute block(BRIGHT _HITE ON I BROWN,

SENSOR3 UL-ROW + l, SENSOR3 UL-ROW + 1 + SENSOR3 ROWS - l,

SENSOR3_UL_COtUMN, SENSOR3_UL_COLUMN + SENSOR3_COLUMNS - 1);

fill attribute block(BRIGHT _HITE ON I BROWN,

SENSOR4 UL-ROW + l, SENSOR4 UL-ROW + 1 + SENSOR4 ROWS - i,

SENSOR4 UL COLUMN, SENSOR4 UL COLUMN + SENSOR4 COLUMNS - 1) ;

fill attribute block(BRIGHT WHITE ON I BROWN,

SENSOR5 UL ROW + i, SENSOR5 UL ROW + 1 + SENSOR5 ROWS - i,

SENSOR5-UL-COLUMN, SENSOR5 _L _OLUMN + SENSOR5 COLUMNS - 1);

updatescreen();

void update screen(void)

display_screen () ;

}

void display_screen(void)

{
/* Iraw the screen with the contents of the character and attribute

arrays */

int i;

char *ap = screen_attributes;

char *cp = screen characters;

unsigned char far *video_mem_ptr = (unsigned char far *) (0xB8OOL <<

for (i = 0; i < 2000; ++i)

{
*video_mem ptr++ = (unsigned char) *cp++;

*video_mem_ptr++ = (unsigned char) *ap++;

}

27

void write_string in screen buffer(char _strina int row,_ int column)

/* cop_y-the string to the specified location in the screen buffer

int location = _ow * 80 ÷ column;

while (*string)
{

screen_characters[location++] = *string++;
}

void write

{

_ouble in screen buffer(char *format string,

d_le _umber, int _ow, int column) -

/* copy the double p_Qcision floating point number to the specified

location in the _reen buffer using the format string */

char string[80];

sprintf(string, format string, number);

writ%_string_in_screen_buffer(string, row, column);

void cut_string(char *destination, char *source, int first char, int last ch£

{ -- _

/* copy specified piece of character string from source to
destination */

char * ptr;

for (ptr = source + first_char; ptr <= source + last_char; ++ptr)
*destination++ = *ptr;

*destination = O;

void user edit_field on screen(char *string,

int row, int start_column, int end column,

char field_foreground, char field_background,

char cursor_foreground, char cursor_background)

/* let the user edit a field on the screen and return the editted

field contents in the string */

int column, key = O, key2;

char saved_field_chars[lO0], saved_field_attrs[lO0], saved attr;

28

copy_characters_from_screen(saved_field_chars, row, row, start column

copy_attributes_from_screen(saved_field_attrs, row, row, start column

fill_attribute_block(field_foreground I field_background,

row, row, start_column, end_column);

column = start column;
saved attr = screen a_tribu_esl row * 80 _ column];
screen a_tributes[?ow * 80 + column] = cursor foreground I cursor ba

while (key != RETURN)
{

while (!kbhit())

{
update_screen () ;

}

key = getch() ;

if (key == ESCAPE)

{
screen attributes[row * 80 + column] = saved_attr;

sprintf(string, "%s", saved field chars) ;

write string in screen_buffer(string, row, start_colu
column = start _olumn;

saved attr = screen attributes[row * 80 + column];

screen attributes[Tow * 80 + column i = cursor_foregr

else if (key >= 32 && key <= 126)

{
screen characters[row * 80 + column] = (char) key;

screen-attributes[row * 80 + column] = saved_attr;

if (column < end column) ++column;

saved attr = screen attributes[row * 80 + column];

screen attributes[row * 80 + column] = cursor_foregr

else if (key == BACKSPACE && column > start_column)

{
screen attributes[row * 80 + column] = saved_attr;

--column;

saved attr = screen attributes[row * 80 + column];

screen attributes[?ow * 80 + column] = cursor_foregr

else if (key == 0)

{
key2 = getch() ;

if (key2 == LEFT_ARROW && column > start_column)

screen attributes[row * 80 + column] = saved

--column;

saved attr = screen attributes[row * 80 + colt

screen attributes[row * 80 t column] = curso:

else if (key2 == RIGHT_ARROW && column < end_column)

{
screen attributes[row * 80 + column] = saved_

++column;

saved attr = screen_attributes[row * 80 + col[

screen attributes[row * 80 + column] = cursol

} 29

copy_characters_from_screen[string, row, row, start_column, end_colu=

copy_attributes to screen(saved_field_attrs, row, row, start_column,

update_screen () ;

void copy characters from screen(char *string,
int start roW, int end_row, int start_column, int end_column)

int row, column;

for (row = start row; row <= end row; ++row)

for (column _ start_column; _olumn <= end column; ++column)

*string++ = screen_characters[row * 80 + column];

*string = O;

void copy characters to screen(char *string,
int start roW, Ynt end_row, int start_column, int end_column)

{
int row, column;

for (row = start row; row <= end row; ++row)
for (column _ start column; _olumn <= end column; ++column)

screen characters[row * 80 + column]--= *string++;

void copy attributes from screen(char *string,
int star_ roW, int end_row, int start_column, int _nd_column)

int row, column;

for (row = start row; row <= end row; ++row)

for (column _ start_column; column <= end_column; ++column)

*string++ = screen_attributes[row * 80 + column];

*string = O;

void copy attributes to screen(char *string,
int start roW, Ynt end_row, int start_column, int end_column)

{
int row, column;

fo_ (row = start row; row <= end row; ++row)
for (column _ start column; _olumn <= end column; ++column)

screen attributes[row * 80 + column]-= *string++;

void fill character block(char c,
in_ star_ row, int end_row, ink s_ar__cc!umn, in_ _nd_column)

(
int row, column;

for (row = start row; row <= end row; ++row)

for (column _ start column; _olumn <= end_column; ++column)

screen characters[row * 80 + column] = c;

void fill attribute_block(char c,

int start_row, int end_row, int start_column, int end_column)

{
int row, column;

for (row = start row; row <= end row; ++row)

for (column _ start column; _olumn <= end_column; ++column)

screen attributes[row * 80 + column] c;

char query_user_for_key(char *prompt)

{
/* Prompt the user for a single key response ./

char back characters[256], back attributes[256];

char front characters[256], front_attributes[256];

int length -= 0;

char * p = prompt, key = 0;

while (*p++) ++length;

open window(back characters, back_attributes,

ROW_query_window,

ROW_query_window t 2,

COLUMN_query_window - length/2 - I,

COLUMN_query_window + length/2 + 5,

WHITE ON 1 BLACK);

openwindow(front characters, front_attributes,

ROW_query_window - i,

ROW_query_window + i,

COLUMN_query_window - length/2 - 3,

COLUMN_query_window + length/2 + 3,

BLACK ON I WHITE);

write_string_in_screen_buffer(prompt,
ROW_query_window,

COLUMN_query_window - length/2);

while (!kbhit()) update_screen();

key = (char) getch();

close window(front characters, front_attributes,

- ROW_query_window - i,

ROW_query_window + i,

COLUMN_query_window - length/2 - 3,

COLUMN_query_window + length/2 + 3) ;

3]

close window(back characters, back_a%tributes,

- ROW_query_window,

ROW_query_window ÷ 2,

COLUMN_query_window - length/2 - i,

COLUMN_query_window + length/2 + 5);

update_screen();

return(key);

double query_user_for_number(char *prompt)

{
/* Prompt the user for a number */

char back characters[256], back attributes[256];

char front characters[256], front_attributes[256];

int length -= 0;

char string[80], * p = prompt;

double number = 0.0;

while (*p++) ++length;

length += i0;

open_window(back characters, back_attributes,

ROW_query_window,

ROW_query_window + 2,

COLUMN_query window - length/2 - i,

COLUMN query window + length/2 + 5,

 ITE_SN I);

open_window(front characters, front_attributes,

ROW_query_window - i,

ROW_query window + i,

COLUMN_query_window - !engKh/2 - __r

COLUMN query window + length/2 + 3,

BLACKjN i W ITE);

write string in screen buffer(prompt,

.... ROW_query_window,

COLUMN_query_window - length/2);

user edit field on screen(string,

.... ROW_query_window,

COLUMN_query window + length/2 - 7,

COLUMN_query_window + length/2 + I,
BRIGHT WHITE ON, BLUE,

BRIGHT--WHITE--ON, BLACK) ;

sscanf(string, "%if", &number) ;

close window(front characters, front_attributes,

- ROW_query_window - i,

ROW query_window + i,

COLUMN_query_window - length/2 - 3,

COLUMN_query_window + length/2 + 3) ;

32 close_window(back_characters, back_attributes,

ROW_query_window.
ROW_query window - _
COLUMN_query window - length/2 - i,

COLUMN_query_window + length/2 + 5) ;

update_screen();

return(number);

void open window(char *character array, char *attribute array,
int start row. int end row, int start_column, inE end_column,

char color_byte)

{
/* open a blank window on the screen, saving the previous contents

in the character and attribute arrays */

copy characters from screen(character_array,
- - - start row, end row,

start-column, end_column);

copy_attributes_from screen(attribute_array,
- start_row, end_row,

start column, end_column) ;

fill character block(' ', start row, end row,
- - star= column, end_column) ;

fill attribute block(color_byte.
- start row, end row,

start-column, end column) ;

void close window(char .character array, char *attribute_array,

in{ start_row, int end_row, int start_column, int end_column)

{
/* close a window on the screen, copying the contents of the

character and attribute arrays to the screen */

copy characters to screen(character_array,
start_row, end_row,
start column, end column);

copy attributes to screen(attribute_array,
- - - start row, end row,

start-column, end column) ;

33

;THIS PROGRAM IS THE INITIAL ATTEMPT TO COMMUNICATE WITH A PC

;AND _CTIVELY SET TEMPERATURE SET POINTS, DEFINE CONTROL SENSORS

;AND READ DATA TO BE DISPLAYED. THIS IS FOR THE PROGRAMMABLE

;HEATER CONTROLLER USING THE 68HCSIIE2 MICROCONTROLLER.

TEMPO EQU

TEMPI EQU

TEMP2 EQU

TEMP3 EQU

TEMP4 EQU

TCONTI EQU

TSETI EQU

TCONT2 EQU

TSET2 EQU

SENSOR EQU

HEATNUM EQU

SENSNUM EQU

SETPOINT EQU

STATUS EQU

PORTA EQU

PORTB EQU

PORTC EQU

DDRC EQU

PORTD EQU

DDRD EQU

PORTE EQU

PACTL EQU

$i0

$Ii

$12

$13

$14

$15
$16
$17

$18
$0F
$19

$1A

$1B

$2O

$i000

$1oo3
$1oo3
$1oo7
$1oo8
$1009

$100A

$1026

DEFSEG PROGRAM, ABSOLUTE

SEG PROGRAM

ORG $F800

34

LDS #$00FF

LDY #$i000

LDAA #$FF

STAA DDRC

BSET $26,Y,$80

BSET $00,Y,$88

BSET $09,Y,$02

LDAA #$30

STAA $I02B

LDAA #$0C

STAA $I02D

;INITIALIZE STACK

;LOAD Y REG WITH SEGMENT OFFSET

;SET ALL PINS OF PORT C AS OUTPUTS

;BY PUTTING FF IN DDRC

;SETUP PA7 OF PORT A AS OUTPUT

;TURN HEATERS OFF (0=ON, !=OFF)

;SETUP BIT1 PORT D AS OUTPUT

;SET UP SCI FOR 9600 BAUD

;ENABLE TRANSMIT AND RECEIVE SCI

LDAA i039H
ORAA #80H

STAA I039H

:POWER ON A/D CONVERTERS

LDAA #$04

STAA PORTC

LDAA #$5E

STAA PORTB

;LOAD 12 BIT D/A WITH 2.73 VOLT VALUE

BSET $03,Y,$I0 ;SET GAIN OF PGA200 TO i0

; INITIAL CONDITIONS

LDAA #$03

STAA TCONTI

STAA TCONT2

LDAA #$30

STAA TSETI

STAA TSET2

_AINLOOP:

HEATERI:

I

; READ TEMPS 1-5

!

BCLR $00,Y,$70 ;THIS SELECTS MUXED

LDAB PORTA ;PUT PORTA IN B
JSR READTEMP

STAA TEMPO

TEMP 0

ADDB #$i0 ;INCREMENT B TO

STAB PORTA ;SELECT TEMP SENSOR 1
JSR READTEMP

STAA TEMPI

ADDB #$I0 ;INCREMENT B TO

STAB PORTA ;SELECT TEMP SENSOR 2
JSR READTEMP

STAA TEMP2

ADDB #$i0 ;INCREMENT B TO

STAB PORTA ;SELECT TEMP SENSOR 3
JSR READTEMP

STAA TEMP3

ADDB #$I0 ;INCREMENT B TO

STAB PORTA ;SELECT TEMP SENSOR 4
JSR READTEMP

STAA TEMP4

"*********HEATER
I

LDAB TCONTI

CLRA

XGDX ;LOAD TCONT1 IN X REG
35

HI OFF:

HI ON:

HEATER2 :

H2 OFF:

H2 ON:

BRCLR $00,Y,$08,HI ON

LDAA TSETI

SUBA #$0A

SUBA SENSOR,X

BMI HEATER2

;IF BIT 3 IS 0 THEN BRANCH TO HI ON

;LOAD A WITH HEATER 1 SET POINT TEMP

;SUBTRACT 2 DEGREE

;SUBTRACT CONTROL1 SENSOR TEMPERATURE

BCLR $00,Y,$08
BRA HEATER2

;TURN HEATER 1 ON

LDAA TSETI

SUBA SENSOR,X
BPL HEATER2

;LOAD A WITH HEATER 1 SET POINT TEMP

;SUBTRACT CONTROL1 SENSOR TEMPERATURE

BSET $00,Y,$08 ;TURN HEATER 1 OFF

LDAB

CLRA

XGDX

TCONT2

;LOAD TCONT2 IN X REG

BRCLR $00,Y,$80,H2 ON

LDAA TSET2

SUBA #$0A

SUBA SENSOR,X
BMI HEATEND

;IF BIT 0 IS 0 THEN BRANCH TO H2 ON

;LOAD A WITH HEATER 2 SET POINT TEMP

;SUBTRACT 2 DEGREE

;SUBTRACT CONTROL2 SENSOR TEMPERATURE

BCLR $00,Y,$80

BRA HEATEND
;TURN HEATER 2 ON

LDAA TSET2

SUBA SENSOR,X

BPL HEATEND

;LOAD A WITH HEATER 2 SET POINT TEMP

;SUBTRACT CONTROL1 SENSOR TEMPERATURE

BSET $00,Y,$80 ;TURN HEATER 2 OFF

HEATEND :

HERE:

CHECKD:

H2STAT:

BRCLR $2E,Y,$20,HERE ;IF DATA RECIEVED BYTE NOT SET THEN

;GOTO NOBYTE

LDAA $I02F

CMPA #$44

BNE CHECKS

JSR SENDBYTE

;READ DATA RECEIVED

;CHECK IF BYTE IS "D"

;IF NOT "D" THEN GOTO CHECKS

;ECHO "D" BACK TO PC

CLRA

STAA

BRCLR

BSET

BRCLR

BSET

STATUS

$00,Y,$08,H2STAT

STATUS,S01

$00,Y,$80,SENDSTAT

STATUS,S02

;READ STATUS OF HEATER 1

;READ STATUS OF HEATER 2

SENDSTAT: LDAA

JSR
36

STATUS

SENDBYTE

;SEND STATUS WORD

LDAA TEMPO :SEND SENSORTEMPERATURE0
JSR SENDBYTE

CHECKS:

WAITHN:

WAITSN:

WAITSP:

FIGURE1:

FIGURE2:

LDAA
JSR

LDAA
JSR

LDAA
JSR

LDAA
JSR

JMP

CMPA
BNE

JSR

BRCLR
LDAA
STAA
JSR

BRCLR
LDAA
STAA
JSR

BRCLR
LDAA
STAA
JSR

LDAA
CMPA
BEQ
LDAA
STAA
LDAA
STAA

/MP

LDAA

STAA

LDAA

STAA

TEMPI

SENDBYTE

TEMP2

SENDBYTE

TEMP3

SENDBYTE

TEMP4

SENDBYTE

NOBYTE

#$53

NOBYTE

SENDBYTE

$2E, Y, $20, WAITHN

$I02F

HEATNUM

SENDBYTE

$2E,Y,$20,WAITSN

$I02F

SENSNUM

SENDBYTE

$2E,Y,$20,WAITSP

$i02F

SETPOINT

SENDBYTE

HEATNUM

#$02

FIGURE2

SENSNUM

TCONTI

SETPOINT

TSETI

NOBYTE

SENSNUM

TCONT2

SETPOINT

TSET2

;SEND SENSOR TEMPERATURE 1

;SEND SENSOR TEMPERATURE 2

;SEND SENSOR TEMPERATURE 3

;SEND SENSOR TEMPERATURE 4

;CHECK TO SEE IF BYTE IS "S"

;IF NOT "S" THEN GOTO NQBYTE

;ECHO "S" BACK TO PC

;WAIT FOR HEATER NUMBER TO BE SENT

;READ HEATER NUMBER BYTE

;ECHO HEATNUM BACK TO PC

;WAIT FOR SENSOR NUMBER TO BE SENT

;READ SENSOR NUMBER BYTE

;ECHO SENSNUM BACK TO PC

;WAIT FOR HEATER NUMBER TO BE SENT

;READ SET POINT BYTE

;ECHO SETPOINT BACK TO PC

;IF HEATER #2 GOTO FIGURE2

NOBYTE: JMP MAINLOOP

37

; SENDBYTE SUBROUTINE

I

SENDBYTE: STAA

TWAIT: BRCLR

RTS

$I02F ;TRANSMIT BYTE FROM A REG

$2E,Y,$80,TWAIT ;WAIT FOR BYTE TO BE SENT

READTEMP :

NOTYETI:

NOTYET:

CLRA

LDAA # $ 0A

DECA

BNE NOTYETI

STAA $1030

LDAA #$06

DECA

BNE NOTYET

LDAA $1031

RTS

DEFSEG reset, ABSOLUTE

SEG reset

ORG SFFFE

DB $F8

DB $00

END

;SET A/D FOR SINGLE SCAN CHANNEL 0

;WAIT FOR MUX TO SETTLE

;AND START CONVERSION

;CONVERSION COMPLETE

;READ A/D RESULT

38

APPENDIX B

PHCC TEST PROCEDURES/RESULTS

39

Materials Required:

• 286 (or better) IBM-compatible PC with a 9-pin serial port

• 9-pin female computer cable wired as shown in figure 1

• PHC program disk with PHCCODE6.BIN, BOOT.BIN, HEATER.EXE, and
PROGCOM1 .EXE.

• Bipolar 15-V power supply (i.e., +15 V and -15 V)

• 5-V power supply

• Variable 5-V power supply.

Special Notes:

External pin numbers, EP1 through EP29, may be different than used in the actual hybrid design.

Check the MSFC drawings to ensure connections are to the right points.

Computer Interface Set-Up:

Connect the computer corn 1 port to the hybrid circuit as shown in figure 1.

r

It

EP25

| 4
| 9
I

Note: Lines 1 and 6 may

need to be pulled high

through 3K resistors.

!

| DB9 Female Connector

Hybrid Circuit | (Attach to P.C.)
!

Connections |
.J

Figure 1.

Next, connect the power supplies to the appropriate pins as shown in figure 2; i.e., +15 V to EP26 and
EP24, -15 V to EP27, +5 V to EP28, and GND to EP29 and EP25.

41

EP26 (_EP24

EP27 (_

EP28 (_)

EP25 (_EP29

. VDD+ 15V

. VSS-15V

VCC+ 5V

m

m

Figure 2.

Last, install 10-k ohm l/4-W resistors in place of heater-1, heater-2, heater-3, and heater-4. These
resistors will model the actual heaters and will be connected to pins EP16 through EP23, as shown in

figure 3.

10K

EP16 (_"A__ EP17

Heater-1

10K

EP18 (_)-'_/_ EP 19

Heater-2

10K

EP20 _ EP21

Heater-3

10K

EP22 _ EP23

Heater-4

Figure 3.

System Testing:

l. Once all electrical connections are made, power should be turned on to the hybrid circuit. The

sum total current of all supplies should not be greater than 100 mA. Record the currents on each power

supply.

Supply Measured Value Acceptable Range
(mA) (mA)

+15 V P.S. 30 <200

-15 V P.S. 30 <200

+5 V P.S. 20 <200

2. Turn all power supplies off and short EP15 to ground. Once shorted, turn on all power

supplies.

42

3. Insert PHC software disk in the PC and change the active drive to the one containing the

disk. At the proper disk prompt, type PROGCOM1 PHCCODE6.BIN. The computer screen should

appear as shown in figure 4 and the value for byte number automatically increment up to the value

shown in figure 4. Once this completes, the message 'eeprom code successfully transferred' will

display.

A:>progcom 1 phccode6.bin

The bootstrap code is 256 bytes.

byte #255 ...bootstrap successfully transferred.

The eeprom code is 2048 bytes.

byte #2047 ...eeprom code successfully transferred.
A:>

Figure 4.

4. Remove the shorting wire on EP15.

5. Cycle all power supplies off and then on.

6. Type HEATER on the PC followed by a return. The screen should appear as shown in

figure 5.

Copper

n Enter 1 for COM1 or 2 for COM2]

Heater 3
ESC exit to dos
S............ set point command
F............ save reading in a file
A............ set sensor averages

°C _ °C
T8 T1

V---1 oc
T2

Figure 5.

43

7. Enter a 1 (for communication port 1) followed by a carriage return.

8. Values should appear in the spaces for T1 through T8. T1 and T2 are the values for the

internal hybrid AD590s which should read between 24 and 33 °C. The rest of the sensors should read

"0.' Record the values on the computer screen for T1 and T2 below.

T1 50 °C

T2 50 °C

9. Set the variable power supply to 5 V and connect it through a serial 10-k ohm resistor

individually to each of the AD590 inputs (see fig. 6). Record the values shown on the computer screen

for the channel stimulated by the supply. Repeat this process for the power supply set to 6 V and again at
6.5 V.

AD590 Input Measured Value Measured Value Measured Value
at5V at6V at 6.5 V

EP1 (T3) 0 28 49.5

EP2 (T4) 0 28 49.8

EP3 (T5) 0 29 50

EP4 (T6) 0 29 50

EP5 (T7) 0 30 50

EP6 (T8) 0 30 50

Note: At 5 V the measured value should be between 0.0 and 1.0 °C, at 6 V the measured value should be between
28 and 32 °C, and at 6.5 V the measured value should be between 49 and 50 °C.

(
m

m

EP1 Thru EP6
10K One at a Time!

5 to 7 VoltPower Supply

Figure 6.

10. On the PC, type'S' to select the 'set point command' option. This option will allow the

heater controls to be tested. At the prompt, 'Enter 1, 2, 3, or 4 to select the heater,' enter a 1 to make

heater 1 active. The software will then prompt, 'Enter 3, 4, 5, 6, or 7 to select the sensor,' enter a 7 to

select an AD590 input for control. The next prompt, 'Enter 0 to 50 °C for set point,' enter a value of 30

°C. This sets up the heater to turn on below 30 °C and off at temperatures above 30 °C. The screen on

44

thecomputershouldreflect theinformationin one of the four comers, depending on which heater is
selected.

11. Using the same variable power supply setup as in step 9, set the voltage to 5 V and inject on

EP8. The computer screen should verify that the heater 1 is on by a different color block around the

heater. Hook a voltmeter to the heater 1 resistor (the meter should indicate 15 V). Slowly increase the

variable voltage supply (maximum of 7 V) until the heater 1 voltage drops to 0, as indicated on the

voltmeter. Verify that the computer screen also indicates the heater cutoff and record the voltage on the

variable supply at cutoff in the table below.

Heater

Heater 1
Cutoff Voltage (V)

5.5051
Acceptable Range (V)

2.9---) 3.1

12. Repeat steps 10 and 11 for the remaining three heaters using the same sensor and set point,

but choose a different heater. Remember to move the voltage meter to the active heater and record the
values in the table below.

Heater

Heater 2
Cutoff Voltage (V)

5.503

Heater 3 5.503

Heater 4 5.503

Acceptable Range (V)

45

6

7

5

8

4

9
3

10

2
11

1
12

14
13

\

\
T

17
19

23

24

27
26

25
29

15
28

20

18
16
22

/
Connections to Programmable Heater Controller Hybrid

Package P/U Numbers Correspond With EP Numbers
on Schematic

Argo Transdata Corp.

July 21, 1992

46

APPR 0 VAL

A PROGRAMMABLE HEATER CONTROL CIRCUIT FOR SPACECRAFT

by

D.D. Nguyen, J.W. Owen, D.A. Smith, and W.J. Lewter

The information in this report has been reviewed for technical content.

Review of any information concerning Department of Defense or nuclear energy

activities or programs has been made by the MSFC Security Classification Officer.

This report, in its entirety, has been determined to be unclassified.

Director

Structures & Dynamics Laboratory

_ _rL. Randall

ctor

Astrionics Laboratory

i

REPORT DOCUMENTATION PAGE _,m App_ov_
OMB No. 0704-0188

e_e_tnf nf_'matmn n -'-_ _Z._'f _ ____"_ " - uammems_J_lmmg1_n_our_mestlmo_oranyotheras!_ofl_is
._..___-_.: • _,r,y _,yy_-_uuv_ u. r'_'guung mlt w,,r_m, tO wasnmcj_n _elloqu,llf_et's _4BrvtcB, Oif_'[Ofllte 1'Or Irl_Oml_lO_ O_r'a'l_l_ and Rt,,,,_r.¢ :_, • t_,=..,,.-._

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I • June 1994 Technical Memorandum

4. TITLE AND SUBTITLE IS. FUNDING NUMBERS

A Programmable Heater Controi Circuit for Spacecraft

(Center Director's Discretionary Fund Final Report Project No. 90-19)

6. AUTHOR(S)

D.D. Nguyen, J.W. Owen, D.A. Smith, and W.J. Lewter

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER

George C. Marshall Space Flight Center

Marshall Space Flight Center, Alabama 35812

9. SPONSORING/MONITORING AGENCY NAME(S)AND ADDRESStES) 10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

National Aeronautics and Space Administration
Washington, DC 20546 NASA 12,I-I 08459

11. SUPPLEMENTARY NOTES

Prepared by Structures and Dyr.amics Laboratory and Astrionics Laboratory, Science and Engineering
Directorate

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Unclassified_Unlimited

Subject Category: 02

13. ABSTRACT (Maximum 200 words)

12b. DISTRIBUTION CODE

Spacecraft thermal control is accomplished for many components through use of multilayer insulation

systems, electrical heaters, and radiator systems. The heaters are commanded to maintain comFonent tempera-

tures within design specifications. The programmable heater control circuit (PHCC) was designed to obtain an

effective and efficient means of spacecraft thermal control. The hybrid circuit provides use of control instru-

mentation as temperature data, available to the spacecraft central data system, reprogramming capability of the

local microprocessor during the spacecraft's mission, and the elimination of sig'nificant spacecraft wiring. The
hybrid integrated circuit has a temperature sensing and conditioning circuit, a microprocessor, and a heater

power and control circuit. The device is miniature and housed in a volume which allows physical inte_ation

with the component to be controlled. Applications might include alternate battery-powered logic-circuit con-

figurations. A prototype unit with appropriate physical and functional interfaces was procured for testing. The

physical functionality and the feasibility of fabrication of the hybrid integrated circuit were successfully

verified. The remaining work to develop a flight-qualified device includes fabrication and testing of a Mil-

certified part. An option for completing the PHCC flight qualification testing is to enter into a joint venture
with industry.

14. SUBJECT TERMS

thermal condition, temperature control, reprogramming circuit

17. SECURITYCLASSIFICATION18. SECURITYCLASSIFICATION19. SECURITYCLASSIFICATION
OF REPORT OFTHIS.PAGE OFABSTRACT

Unclassified Unclassified Unclassified
NSN7540-01-280-5500

15. NUMBER OF PAGES

52
16. PRICE CODE

NTIS

20. UMITATION OF ABSTRACT

Unlimited
Standard Form 298 (Rev 2-89)
P_ee,cnt=_-d by ANSI S_ Z39-18
2gB._o_

